Cross-domain Sentiment Classification using an Adapted Naïve Bayes Approach and Features Derived from Syntax Trees

نویسندگان

  • Srilaxmi Cheeti
  • Ana Stanescu
  • Doina Caragea
چکیده

Online product reviews contain information that can assist in the decision making process of new customers looking for various products. To assist customers, supervised learning algorithms can be used to categorize the reviews as either positive or negative, if large amounts of labeled data are available. However, some domains have few or no labeled instances (i.e., reviews), yet a large number of unlabeled instances. Therefore, domain adaptation algorithms that can leverage the knowledge from a source domain to label reviews from a target domain are needed. We address the problem of classifying product reviews using domain adaptation algorithms, in particular, an Adapted Naı̈ve Bayes classifier, and features derived from syntax trees. Our experiments on several cross-domain product review datasets show that this approach produces accurate domain adaptation classifiers for the sentiment classification task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CROSS-DOMAIN SENTIMENT CLASSIFICATION USING GRAMS DERIVED FROM SYNTAX TREES AND AN ADAPTED NAIVE BAYES APPROACH by SRILAXMI CHEETI

There is an increasing amount of user-generated information in online documents, including user opinions on various topics and products such as movies, DVDs, kitchen appliances, etc. To make use of such opinions, it is useful to identify the polarity of the opinion, in other words, to perform sentiment classification. The goal of sentiment classification is to classify a given text/document as ...

متن کامل

Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis

In the community of sentiment analysis, supervised learning techniques have been shown to perform very well. When transferred to another domain, however, a supervised sentiment classifier often performs extremely bad. This is so-called domain-transfer problem. In this work, we attempt to attack this problem by making the maximum use of both the old-domain data and the unlabeled new-domain data....

متن کامل

Feature Selection in Sentiment Analysis

In this article, we propose a new method for feature selection and sentiment classification. To identify the most salient features belonging to the specific categories, we use the Z score measure. Based on this score, we can identify confident features and use the Information Gain (IG) measure to obtain scores for terms appearing in the neighborhood of the confident features. Based on this info...

متن کامل

DsUniPi: An SVM-based Approach for Sentiment Analysis of Figurative Language on Twitter

The DsUniPi team participated in the SemEval 2015 Task#11: Sentiment Analysis of Figurative Language in Twitter. The proposed approach employs syntactical and morphological features, which indicate sentiment polarity in both figurative and non-figurative tweets. These features were combined with others that indicate presence of figurative language in order to predict a fine-grained sentiment sc...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013